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FORTRAN applications programs can be executed on multipocessor computers in either a 
unitasking (traditional) or multitasking form. The latter allows a single job to use more than 
one processor simultaneously, with a consequent reduction in elapsed time and, perhaps, the 
cost of the calculation. An introduction to programming in this environment is presented. The 
concepts of synchronization and data sharing using EVENTS and LOCKS are illustrated 
with examples. The strategy of strong synchronization and the use of synchronization tem- 
plates are proposed. We emphasize that incorrect multitasking programs can produce 
irreducible results, which makes debugging more difficult. ( 1986 Academic Press. Inc. 

1. INTRODUCTION 

Computers with multiple processors are increasingly available for large-scale 
scientific computation. This paper is intended to introduce FORTRAN program- 
mers to this new environment. Since existing programs will continue to run on 
many multiprocessor computers (perhaps with some changes), we will first discuss 
the conditions under which it is desirable to modify them (or construct new ones) 
to take advantage of the multiple processors. For readers who decide to proceed, 
we discuss the two fundamental concepts of synchronization and data sharing. We 
believe that this introduction will provide sufficient background for most users, but 
those who want a definitive treatment will need to consult the bibliography. 

This presentation will refer to the Cray X-MP or Cray-2 computers running 
under the Cray Timesharing System (CTSS). However, many of the concepts are 
more widely applicable. We believe that the reader will find it easy to determine the 
applicability of any remark to his own situation. In particular, our analysis is 
appropriate for the class of computers with shared memory. This is in contrast to 
computers in which each processor has its own memory and data are transmitted 
from processor to processor as needed. Our discussion is also influenced by the fact 
that CTSS is a multiuser environment. Not only do users share memory, but dif- 
ferent users may simultaneously use the processors. The strategies we suggest are 
not intended for strict adherence, but are designed to provide conceptual guidelines 
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(from which it may be necessary to depart depending on the applications problem 
as well as the computing environment). 

A considerable volume of literature already exists on the subject of multiple- 
processor computers; however, we feel that there is a need to address the program- 
ming issues in terms familiar to applications programmers rather than to computer 
scientists. We have found that some presentations are overly complex. Moreover, 
some excellent articles are not generally available or cannot be referenced. Although 
synchronization and data sharing can be difficult to employ, they are not difficult 
concepts. The material presented here comes from our own experience, as well as 
constitutes a review of what we have learned from others, We treat the subject by 
way of a few simple examples. We expect that the reader will be able to infer from 
these most of what is necessary to produce multitasking programs. 

We will regard each processor as an essentially complete computer. This means 
that the N-processor computer can execute N independent jobs as long as they all 
can lit into the shared memory. We assume that such a mode of operation requires 
no effort on the part of the user and that the operating system will tend to the 
details. Traditional jobs which are executed with a single stream of instructions are 
called UNItasking jobs. The only way a program will use more than one processor 
at a time is if the programmer takes the necessary steps or organize his program 
into sections (called “tasks”) that can be performed simultaneously. These tasks 
need not be totally independent, but the more independent they are, the easier the 
programming and the more eflicient the results. 

Just as high-level languages such as FORTRAN allow the user to ignore 
hardware details, multitasking in such languages can be accomplished at the same 
high level. In fact, even the number of processors available need not be known. 
Thus, we can approach multitasking at the FORTRAN level. The user, in general, 
will not control which processor executes each task, nor will the precise order of 
execution of instructions which are in separate tasks be predictable. Because of this, 
multitasking programs have a profound new property. A program that happens to 
be incorrect may produce different results on subsequent executions with the same 
input data. Thus, a correct result does not guarantee a correct code, even for the 
particular logic path tested. We shall recommend ways to minimize the probability 
of producing an incorrect code. Prevention is the key here because, in general, one 
does not know when an irreproducible code exists, and even if one does know, 
debugging runs are more difficult because they themselves are not necessarily 
reproducible. 

A good strategy is to first structure the code so that it is suitable for multitasking. 
This part requires the greatest effort and care. It implies identifying the sections of 
the code which can be executed in parallel. Next, if necessary, the code should be 
sped up by conventional programming techniques, such as vectorization. Finally, 
when this has been tested, the multitasking capability should be added. Tasks can 
be used at any level of code logic where parallelism exists or can be exploited. 
However, since there is some cost to creating tasks, one should try to multitask at 
relatively high levels (i.e., at least on a subroutine level). 
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There is another matter which, strictly speaking, has nothing to do with mul- 
titasking, but which will affect many users converting from single-processor com- 
puters to multiprocessor computers: data initialization and retention. FORTRAN 
rules do not specify the contents of an uninitialized variable or the contents of a 
local variable on a subsequent execution of a subroutine. However, because many 
traditional loaders provide zero initial values and many compilers retain the values 
of local variables for use when the same subroutine is executed subsequently, many 
existing programs rely on these conditions. Multiprocessor computers generally 
assign space for local variables at the time a subroutine is called. It is likely that this 
space was previously used for another purpose. Thus, on multiprocessors, even 
unitasking jobs must generally adhere to the practice of assigning initial values to 
each local variable on each entry into a routine. When the value of a local variable 
must be retained from the previous subroutine call, this can be assomplished by 
specifying the variable in a FORTRAN SAVE statement, or by putting it in a 
COMMON block. 

On the Denelcor HEP the questions of synchronization and data sharing are 
handled differently than described here. Variables which are shared between tasks 
have a state, either “empty” or “full,” depending on whether the variable was last 
read from or written to memory, respectively. These access states can be used to 
control the interaction of tasks. Although there is no standard implementation of 
multitasking, all implementations we have seen provide equivalent functional 
capability. 

2. POSSIBLE ADVANTAGES OF MULTITASKING 

For the user, there are two primary advantages to multitasking: reducing elapsed 
time for execution and/or reducing the cost of the job. Multitasking will almost 
always reduce the elapsed time. Of course, this is only important for long-running 
jobs that take greater than the desired turnaround time or a large fraction of the 
mean time between failures of the machine. In a timesharing environment, mul- 
titasking could improve the response time as well. 

Whether multitasking reduces cost depends on the charging algorithm. With an 
operating system that gives the machine to a single user, one would suppose that 
the charge is proportional to the total residency time. In this case, multitasking 
would generally reduce the charge. However, with operating systems such as CTSS 
in which users can share both memory and processors, the advantage is substan- 
tially reduced. If the CPU charge is the sum of the idividual CPU charges, then this 
component of the cost is presumably not substantially affected, assuming that the 
total amount of calculation remains the same. However, if in addition there is a 
substantial memory charge, multitasking may pay off by reducing the memory 
residency time. 

The user needs to weigh these potential gains against the effort of creating and 
maintaining a multitasking code. Moreover, the structure necessary for an optimal 
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multitasking code will complete with other design considerations, such as mini- 
mizing the number of operations or the memory size. Once multitasking has been 
implemented in a code, all future modifications must take this into account. 
Moreover, the removal of multitasking from a code is not always an easy task. In 
an environment such as a Cray X-MP or Cray-2 running under CTSS, we expect 
that multitasking will be worthwhile for only a small fraction of jobs, namely, those 
characterized by very large memory and/or very long run times. 

3. TASK SYNCHRONIZATION 

In this section, we illustrate what constitutes a task, how the user starts tasks 
and, once started, how the order of execution is controlled to reflect dependencies 
among the tasks. The burden falls entirely on the user to decide which calculations 
can be performed in parallel. The tasks should be organized to reflect the logic of 
the program and should generally not attempt to conform exactly to the number of 
processors. In multiuser environments, it is generally not advantageous to try to 
maintain a constant number of taks. 

Generally, a SUBROUTINE is the smallest FORTRAN unit that can be a task. 
In fact, starting a task is analogous to CALLing a SUBROUTINE, except that the 
CALLing routine continues to execute beyond the CALL and the CALLed routine 
never returns to the CALLer, but instead terminates. More generally, each task 
contains several subrutines, one of which is initially invoked from another task and 
possibly others which are called from this “initial” one. A routine may appear in 
more than one task. 

When execution commences, only one task exists. We shall refer to this as the 
“original” task, even though, once additional tasks are created, they are in some 
sense equal. For many applications, it is conceptually easier to make the original 
task a controlling task and to allow the other tasks to perform specific bits of work. 
We recommend this conceptual approach as being safer, at least for inexperienced 
users. Therefore, we shall assume that the original task will do the job of starting all 
other tasks. If the work of the other tasks is similar, the top-level routine in each 
might be the same, but this is not necessary. 

Consider a unitasking program containing 

C EXAMPLE 1A 
CALL RED(R1, R2,...) 
CALL GREEN(G1, G2,...) 
CALL BLUE(B1, B2,...) 

If the three calculations are independent, then instead of the three calls, three tasks 
could be started: 

C EXAMPLE 1B (INCOMPLETE) 
EXTERNAL RED, GREEN, BLUE 
CALL TSKSTART(TCA( 1, l), RED, Rl, R2 ,...) 

581/63/l-10 
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CALL TSKSTART(TCA(l, 2), GREEN, Gl, G2,...) 
CALL TSKSTART(TCA(1, 3), BLUE, Bl, B2 ,...) 

One should think of this as creating a situation in which as many as four tasks 
(including the original task) are executing after these statements are executed. In 
actuality, some tasks may be completed before others have started. As long as the 
unitasking version is correct and the tasks RED, GREEN, BLUE, and the original 
task are independent, the multitasking version is correct. Some additional 
declarations are necessary to make this example complete; they are described later, 
along with the TCA array. It is necessary to declare RED, GREEN, and BLUE to 
be EXTERNAL since these subroutine names are being passed as parameters. We 
use the CTSS syntax here, but some other implementations have similar 
capabilities. For example, on the Denelcor HEP a task is started with 

CREATE RED(R1, R2,...) 

Suppose now that the original task should proceed only after the completions of 
RED, GREEN, and BLUE. This is ensured by writing 

C EXAMPLE 1C 
INTEGER TCAR, TCAG, TCAB 
COMMON/TNAME/TCAR(2), TCAG(2), TCAB(2) 
EXTERNAL RED, GREEN, BLUE 
TCAR(l)=2 
TCAG(1)=2 
TCAB(1)=2 
CALL TSKSTART(TCAR, RED, Rl, R2 ,...) 
CALL TSKSTART(TCAG, GREEN, Gl, G2,...) 
CALL TSKSTART(TCAB, BLUE, Bl, B2,...) 
CALL TSKWAIT(TCAB) 
CALL TSKWAIT(TCAG) 
CALL TSKWAIT(TCAR) 

C RED, GREEN, AND BLUE HAVE COMPLETED 

In the CTSS implementation of multitasking, the integer task control arrays (here 
TCAR, TCAG, and TCAB) are objects, consisting of two or more elements, that 
are associated with each task. In this case they associate each TSKWAIT with an 
appropriate TSKSTART, and each TCA is two elements. The user must store the 
number of elements in the first element, hence TCAR( 1) = 2. A TCA with more 
elements allows the user to pass more information into the task, but we shall not 
illustrate that here. In Example lC, the original task will wait for each of the other 
tasks to be completed in turn before proceeding. The order of the TSKWAIT’s is 
immaterial in this example. The TSKSTART and TSKWAIT for BLUE could be 
replaced with a CALL BLUE so that the original task, which would otherwise be 
waiting anyway, would do this work. However, one should not be overly concerned 
about tasks left waiting. Choices such as this should be resolved on the basis of 
creating the most understandable code, rather than on “optimization.” 
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Generally, the gain of multitasking is greatest if the execution times of RED, 
GREEN, and BLUE are equal. However, it is usually not worthwhile to worry 
about this unless one suspects that the execution times are greatly disparate, in 
which case the code approaches the efficiency of a unitasking code plus the mul- 
titasking overhead. Even if the execution times are disparate, if the number of tasks 
is greater than the number of processors, multitasking may be rewarded since short 
tasks may execute serially on one processor while long ones execute on other 
processors. In this sense, the operating system may provide a form of dynamic load 
leveling. 

Another common situation in which multitasking may apply is 

C EXAMPLE 2A 
DO 10 N = 1, NMAX 

10 CALL WORK(N, Wl, W2,...) 

END 
SUBROUTINE WORK(NN, Wl, W2,...) 
COMMON A( 100, loo), B( loo), C( 100) 
DO 10 J=l,lOO 

10 A(NN, J) = NN*B(Jj + C(J) 
RETURN 
END 

Usually one would prefer that the subroutine to be multitasked contain more work, 
but the example is intended to illustrate the case in which the NMAX executions of 
WORK can be performed in parallel: 

C EXAMPLE 2B 
INTEGER TCA 
COMMON/TNAME/TCA(2,100) 
DIMENSION NARRAY ( 100) 
EXTERNAL WORK 
DO 10 N = 1, NMAX 
TCA(l, N)=2 
NARRAY(N) = N 

10 CALL TSKSTART(TCA(l, N), WORK, NARRAY(N), Wl, W2,...) 
DO 20 N = 1, NMAX 

20 CALL TSKWAIT(TCA( 1, N)) 

Thus, the original task will start the NMAX copies of WORK and wait for them all 
to be completed. Subroutine WORK is not altered. Note that it would have been 
incorrect to pass N as the argument, since the value of variable N continues to 
change after each task is started. This crucial point will be addressed further in the 
next section. Any task can start new tasks at any time as long as the necessary syn- 
chronization is provided for all of the tasks that can be running at any time. 
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Now consider a more complicated unitasking code: 

C EXAMPLE 3A 
DO 10 N = 1, NMAX 

10 CALL WORKl(N, Wll, W12,...) 
C COULD DO WORK HERE IN ORIGINAL TASK 

DO 20 N = 1, NMAX 
20 CALL WORK2(N, W21, W22,...) 

END 

The comment line “COULD DO WORK HERE...” indicates the placement of 
work which must follow the completion of all executions of WORK1 and precede 
all executions of WORK2. Suppose that WORK1 and WORK2 can each be mul- 
titasked, but all of the WORKl’s must be completed before any of the WORK2’s 
start. The safest approach is to create additional tasks: 

C 

10 

15 
C 

20 

25 

EXAMPLE 3B 
INTEGER TCA 
COMMON/TNAME/TCA(2,200) 
DIMENSION NARRAY( 100) 
EXTERNAL WORKl, WORK2 
DO 10 N= 1, NMAX 
TCA(l, N)=2 
NARRAY(N) = N 
CALL TSKSTART(TCA(1, N), WORK& NARRAY(N), Wll, W12,...) 
DO 15 N= 1, NMAX 
CALL TSKWAIT(TCA( 1, N)) 
COULD DO WORK HERE IN ORIGINAL TASK 
DO 20 N = 1, NMAX 
TCA(l,NMAX+N)=2 
CALL TSKSTART(TCA( 1, NMAX + N), 

WORK2, NARRAY(N), W21, W22 ,...) 
DO 25 N= 1, NMAX 
CALL TSKWAIT(TCA( 1, NMAX + N)) 

END 

In principle, this technique of totally independent tasks is sufficient. However, 
another approach is to allow tasks to synchronize with each other at various points 
in their execution. In some cases, this results in code which is easier to understand. 
For example, if in the unitasking program Example 3A, WORK1 and WORK2 
would more naturally be coded as a single routine, such a structure could be main- 
tained in a multitasking program by using synchronization. A secondary reason for 
using synchronization is based on execution efficiency. Consider the addition of an 
overall DO J = 1, JMAX loop around Example 3B. This could result in a very large 
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large number (2*NMAX*JMAX) of TSKSTART’s being executed. There is an 
overhead cost associated with starting new tasks, so execution efficiency may suffer. 

Some tools have been developed which allow tasks to cooperate during their 
execution. We illustrate their use by combining WORK1 and WORK2 into a single 
task (“WORK”) for each N. We will show how EVENTS can be used to syn- 
chronize the NMAX tasks as each one finishes WORKl. An event is like a bit (with 
two states, POSTED and CLEARED) that all tasks can see. Posting an event 
allows all tasks waiting for that event to resume. Clearing an event stops the tasks 
at the next wait for that event until it is posted again. The user can create as many 
events as he desires. Just as for variables, the user chooses the names of events by 
declaring them. Arrays of events may also be used. 

There are three operations that can be performed with respect to each event: 
post, wait, and clear. We will illustrate the case in which one task will alternately 
post and clear a given event and certain other tasks will wait for the event to be 
posted. In Example 2B, one could add at the end of subroutine WORK 

CALL EVPOST(ET(NN)). 

The purpose of this would be to indicate (to any other interested task) that its work 
is complete. Here, ET is an array of events which has been created by the user in a 
manner described later. Note that each of the NMAX tasks will post its own 
element of ET. In the original task, the TASKWAIT’s would be replaced with 

DO 20 N=l,NMAX 
20 CALL EVWAIT( ET(N)) 

which will cause the original task to pause here until all of the other NMAX tasks 
have posted their corresponding events indicating completion. In this example, the 
effect is the same as the original form of Example 2B, but the use of EVENTS per- 
mits a convenient generalization to more complex situations. One penalty of this 
approach is that the modification to subroutine WORK makes it unsuitable 
(generally) for being invoked with a CALL. 

Clearly, this example can be generalized to establish a number of synchronization 
points within tasks. Synchronization points can involve all or just some tasks. For 
synchronization above the simplest level, extreme care should be exercised because 
an incorrect event structure may not be apparent in the results of the calculation. 
We recommend two ways to minimize this danger: STRONG SYN- 
CHRONIZATION and use of synchronization templates. 

Strong synchronization refers to the practice of making the event structure robust 
by using more than the minimum number of events. This will also reduce the 
chance that subsequent program changes will introduce an error into a correct 
event structure. The following example has this property, as well as providing a 
tested synchronization template. We will use 2*(NMAX + 1) events. The array of 
events ET will be posted and cleared in the NMAX subtasks and the array of 
events EN will be posted and cleared in the original task. 
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Consider a unitasking code that generalizes Example 3A with the addition of an 
overall loop: 

C EXAMPLE 4A 

DO 100 J = 1, JMAX 
C COULD DO WORK HERE IN ORIGINAL TASK 

DO 10 N = 1, NMAX 
10 CALL WORKl(N, Wll, W12,...) 
C COULD DO WORK HERE IN ORIGINAL TASK 

DO 20 N=l,NMAX 
20 CALL WORK2(N, W21, W22,...) 
100 CONTINUE 

END 

This could correspond, for example, to a time-stepping or iteration loop in which 
each step or iteration calls for two blocks of work, each of which can be mul- 
titasked. 

One way to visualize the implementation of Example 4 with events is to show the 
time sequence within the original and other tasks and the points (indicated by 
arrows) at which control is passed between the original task and the other tasks: 

ORIGINAL TASK WORK(N) 

start WORK(N) tasks 
DO 100 
wait for all ET( 1, N) t 30 
do work 
clear EN( 2) 
post EN( 1) + 

wait for all ET(2, N) t 
do work 
clear EN( 1) 
post EN(2) -+ 

100 CONTINUE 

wait for all ET( 1, N) 

post ET( 1, N) 

wait for EN( 1) 
do work (WORK1 ) 
clear ET( 1, N) 
post ET(2, N) 

wait for EN(2) 
do work (WORK2) 
clear ET(2, N) 
GO TO 30 

The original task starts NMAX copies of WORK (which will combine WORK1 
and WORK2) and then waits until all NMAX events ET( 1, N) have been posted,bine 
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to perform some work while the other tasks are idle. The posting of EN( 1) by the 
original task is the signal that all the other tasks can commence their first block of 
work. Note that events are never cleared just after being posted, because that 
provides no guarantee that the tasks looking for the events will see them while they 
are posted. In this template, events are always cleared after waiting for a different 
event which confirms that the original event was seen. The sequence post-wait-work- 
clear can be repeated any number of times. In each such block, post and clear refer 
to the same event and wait refers to an event posted by another task or tasks. The 
work-clear order can be reversed as long as work and clear are sandwiched in 
between the wait and the following post. The expression of this event structure in 
CTSS FORTRAN is 

C EXAMPLE 4B 
INTEGER TCA, ET, EN 
COMMON/TNAME/TCA(2,100) 
COMMON/EVCOM/ET(Z, 100) EN(2) 
DIMENSION NARRAY ( 100) 
EXTERNAL WORK 

CALL EVASGN( EN( 1 ), ASTAT) 
CALL EVASGN(EN(2), ASTAT) 
DO 10 N = 1, NMAX 
TCA(l,N)=2 

10 

11 
C 

12 
C 

100 

20 

NARRAY(N) = N 
CALL EVASGN(ET( 1, N), ASTAT) 
CALL EVASGN(ET(2, N), ASTAT) 
CALL TSKSTART(TCA( 1, N), WORK, NARRAY(N), 

Wll, w21, w12, w22 ,...) 
DO 100 J = 1, JMAX 
DO 11 N=l,NMAX 
CALL EVWAIT(ET( 1, N)) 
COULD DO WORK HERE (OTHER TASKS IDLE) 
CALL EVCLEAR(EN(2)) 
CALL EVPOST(EN( 1)) 
DO 12 N = 1, NMAX 
CALL EVWAIT(ET(2, N)) 
COULD DO WORK HERE (OTHER TASKS IDLE) 
CALL EVCLEAR(EN( 1)) 
CALL EVPOST(EN(2)) 
CONTINUE 
DO 20 N= 1, NMAX 
CALL EVWAIT(ET( 1, N)) 

END 
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SUBROUTINE WORK(NN, Wll, W21, W12, W22,...) 
INTEGER ET, EN 
COMMON/EVCOM/ET(2, loo), EN(2) 

30 CALL EVPOST(ET( 1, NN)) 
CALL EVWAIT(EN( 1)) 

C ORIGINAL TASK IDLE 
CALL WORKl(NN, Wll, W12,...) 
CALL EVCLEAR(ET( 1, NN)) 
CALL EVPOST(ET(2, NN)) 
CALL EVWAIT(EN(2)) 

C ORIGINAL TASK IDLE 
CALL WORK2(NN, W21, W22,...) 
CALL EVCLEAR(ET(2, NN)) 
GO TO 30 
END 

Note that after the first trip through statement 10, more than one task is active. The 
comments indicate the points in each task at which synchronization allows work to 
be done. Each event is created by a call to EVASGN, which returns an error flag as 
its second argument, as shown in Example 4B. 

In SUBROUTINE WORK we have chosen to CALL WORK1 and WORK2 to 
isolate the event structure from the rest of the code. If large sections of in-line FOR- 
TRAN appeared here, it is possible that an (erroneous) GO TO could go from 
WORK1 to WORK2, skipping a clear-post-wait sequence. However, the event 
structure has sufficiently strong synchronization to detect this “break” in the event 
structure. The code will run to a deadlock. It is always preferable to deadlock than 
to have the code proceed with the tasks potentially out of step. The number of 
events in Example 4B can be reduced to NMAX + 2, but we don’t recommend it, 
because it then becomes more difficult to diagnose an error in the event structure. 

Another way to visualize this event structure is to show the time sequence 
organized by event. For each event, we show the posting, clearing, and waiting. 
[When the original task initiates the action, upper case (P, C, W) is used; when it 
refers to the WORK tasks, lower case (p, c, w) is used.] 

ET(l, N) EN(l) E’W, N) EN(z) 

w, P 
C 

w, p 

w, P 
C 

w, p 

C 
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Work can be done in the main task just before or after C, and work can be done in 
the other tasks just before or after c. Note that in the FORTRAN for Example 4B, 
there is a final wait for ET(l, N) to ensure that the WORK tasks are all idle before 
proceeding. To generalize this example to perform more blocks of work within each 
task, simply extend the pattern. Each additional block adds two columns and two 
rows to the pattern. 

Although events are powerful, they are not convenient for some situations. Con- 
sider the case of a variable that must be modified by each task in any order. It is 
not necessary to synchronize the tasks all at once; one must merely prevent the 
simultaneous modification of the variable by more than one task. This can easily be 
accomplished with a “lock” which, like an event, is an object with two possible 
states. The statement 

CALL LOCKON(LOCKNAME) 

causes the lock to be set if it is not and causes the task to wait for the lock to be 
turned off if it is already set. This contrasts with events. Posting an event that is 
already posted has no effect. The statement 

CALL LOCKOFF(LOCKNAME) 

clears a lock and continues. As with events, locks must be assigned: 

CALL LOCKASGN(LOCKNAME) 

before they are used. Before each task modifies the shared variable(s), it locks the 
lock; afterward it turns the lock off: 

CALL LOCKASGN(LOCKA) 

CALL LOCKON(LOCKA) 
A=A+l 
CALL LOCKOFF(LOCKA) 

The effect of this, assuming that each task contains similar coding, is that the 
statements in which shared variables are modified (here A = A + 1) is not executed 
simultaneously by different tasks. In contrast to our examples for events, this does 
not cause all the tasks to wait for a common signal (an event), it merely prohibits 
the simultaneous execution of the critical section of code-but the order in which 
the tasks execute the critical section in unpredictable. 

Events and locks may be used together. For example, the number of events in 
Example 4B could be reduced to about 3 by the addition of a few locks. It is 
generally true that events produce less parallelism, especially when all tasks but one 
are waiting for the last task to reach a synchronization barrier. However, the 
“looser,” more execution-efficient structure that can result from using locks can also 
complicate the debugging process if the regions of code which can overlap are more 
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extensive. Finally, the style of synchronization should strongly depend on what 
seems most natural for the given problem. This certainly includes the option of 
using unsynchronized tasks (only TSKSTARTs and TSKWAITs). 

One way to obtain statistical evidence for the correctness of an event (or lock) 
structure is to program the structure, but with random amounts of busy work 
replacing any actual work within each task. Next, some code must be added to each 
task at the locations where work can occur, such that an overall calculation using 
shared variables can only yield a correct answer if the work is performed in the 
expected order. We tested Example 4B in this fashion. Between each syn- 
chronization point in the subtasks we incremented a counter corresponding to that 
task (in addition to the random busy work). At each point where the subtasks are 
supposed to be idle, the main task checks each counter for the correct value. If this 
procedure is executed a large number of times, and if sufficient CPU overlap is 
obtained, one can have some confidence in the events. This procedure assumes that 
the event structure is not data dependent, as would be the case if, for example, there 
were conditional jumps around synchronization points. The correctness of such a 
structure is even more difficult to determine. 

4. DATA SHARING 

Depending on how they are declared, variables are visible to one or more tasks. 
Variables that are visible to more than one task must be treated carefully to ensure 
that they are used and assigned in the proper sequence by different tasks. The 
seriousness of this issue is emphasized by considering an apparently isolated section 
of code. If that section of code can be executing simultaneously with another task, 
events and/or locks must generally be used when referring to shared data. 

In traditional FORTRAN, variables can be classed as local, COMMON, or 
dummy argument. The scope of a variable becomes more complex in a multitasking 
code, as shown in the table: 

Unitasking 

LOCAL 
COMMON 
DUMMY ARGUMENT 

Multitasking 

Shared Not Shared 

SAVEd LOCAL 
COMMON TASK COMMON 

depends 

Local variables that are not SAVEd are only defined during the execution of the 
routine in which they appear. Their value is not retained after RETURN from the 
routine. For SUBROUTINES in more than one task, local variables are not shared 
between tasks. Separate copies of each local variable exist for each task. When local 
variables are SAVEd, two things happen, both being a consequence of the fact that 
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SAVEd variables are assigned to a single static location. The same variable value is 
shared by all tasks which call the routine in which the variable is SAVEd. The value 
is retained for subsequent executions of the subroutine in the same or another task. 
During a period of time in which a SAVEd variable is not modified by any task, it 
can be used by all tasks as a constant. Any modification of SAVEd variables should 
be controlled by the use of events and locks. Clearly, each task could be allowed to 
modify independent elements of a SAVEd array without synchronization. When a 
SAVEd variable is passed as an actual argument to a routine, the corresponding 
dymmy argument is shared between tasks, since the scope is established by the 
original SAVE declaration. 

All four possibilities of sharing or not sharing between routines and tasks are 
available: 

Shared Between 

Routines Tasks 

local 
SAVEd 
TASK COMMON 
COMMON 

no 
no 
yes 
yes 

no 
yes 
no 
yes 

Variables in COMMON are global with respect to both tasks and routines. A new 
declaration syntax, 

TASK COMMON/CNAME/Vl, V2,... 

creates a COMMON having a separate copy for each task. Thus a variable in a 
TASK COMMON (as with a local variable) can simultaneously have different 
values in each task. 

The scope of dummy SUBROUTINE arguments depends first on the declaration 
of the actual (original) argument. A variable that is originally local with respect to 
tasks will be shared among tasks if it is passed in a TSKSTART invocation. 
However, we recommend caution when passing arguments into tasks, because this 
creates numerous potential failure modes. If the CALLing routine terminates before 
the task that it started terminates, not only do variables local in the CALLing 
routine become undefined, but, in some implementations, the addresses of all 
arguments passed to a task may also become unreliable. It is for this reason, in 
Example 4B, that we use COMMON to communicate the events to the tasks. In 
Examples 3B and 4B, the task index N is passed into the tasks as an element of the 
array NARRAY(N) = N. To pass N itself from the original task would result in all 
tasks referencing the same location N, rather than obtaining the value of N present 
at the time of the TSKSTART. 
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It is also necessary to modify the notion of arguments preserved on exit from a 
SUBROUTINE. Consider 

CALL LIN(B, A, C) 

and assume that the arguments A and C are input arguments; that is, they are 
unchanged on exit from LIN. Suppose that the multitasked subroutine WORK in 
Example 2B consists of 

C EXAMPLE 5A 
SUBROUTINE WORK(NN) 
COMMON A, B( loo), C( 100) 
CALL LIN(B, A, C, NN) 
RETURN 
END 
SUBROUTINE LIN(B, A, C, NNN) 
DIMENSION B( lOO), C( 100) 
B(NNN) = B(NNN) + C(NNN)*A 
RETURN 
END 

Variables A, B, and C are shared, but the simultaneous calls to LIN are correct 
because within the tasks, A and C are unchanged, so all tasks can use them. 
Variable B is modified, but each task can only modify one element. However, a 
modification to LIN that retains the property that A and C are unchanged on exit 
from LIN results in an incorrect task: 

C EXAMPLE SB(INCORRECT) 
SUBROUTINE WORK(NN) 
COMMON A, B( loo), C( 100) 
CALL LIN(B, A, C, NN) 
RETURN 
END 
SUBROUTINE LIN(B, A, C, NNN) 
DIMENSION B( loo), C( 100) 
A = A*C(NNN) 
B(NNN) = B(NNN) + A 
A = A/C(NNN) 
RETURN 
END 

This was intended to produce the same results as Example 5A. The problem is that 
one copy of variable A is shared among all the tasks. Within each task, A is tem- 
porarily multiplied by the element of C associated with that task. It is quite possible 
that another task will pick up A before it is restored to its original value. Thus, the 
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results of Example 5B will be irreproducible unless locks or events are employed. 
Restoring the value of the shared variable A on exit from LIN is insufficient; A 
must remain unchanged in LIN. Unfortunately, incorrect code, such as Exam- 
ple 5B, may execute numerous test runs correctly, failing to reveal its lack of 
correctness. 

It is a deeply ingrained notion in traditional programming that within a segment 
of code all modifications of the values of variables are apparent, with the exception 
of SUBROUTINE or FUNCTION invocations which can result in modification of 
arguments and any variables in COMMON. In a multitasking code, shared 
variables can be changing unpredictably during the course of execution, so it is 
essential to have a clear mental picture of which variables are shared among tasks. 

We have found that, even in a large code which uses events, it is feasible to 
employ a methodical technique to lcate errors in data sharing. First, each section of 
code which can overlap must be identified. Next, shared variables (i.e., COMMON, 
SAVEd, or some arguments) which are modified in these sections must be located. 
Finally, check that, for these variables, no storage locations which are modified by 
one task are modified or used in a potentially overlapping section of another task. 
In a few hours, we were able to locate a data sharing error in a large code. To do so 
requires understanding the synchronization structure, but the work being perfor- 
med only needs to be inspected in terms of modifying and using storage locations. 

5. SUMMARY 

Multitasking FORTRAN programs are more susceptible to error and con- 
siderably more difficult to debug than unitasking codes. The results of an incorrect 
multitasking code may be irreproducible, and thus may be correct in any given run. 
The following guidelines provide a starting point optimized for CTSS. They will not 
be equally true in other environments. 

To multitask or not? Multipocessor computers may run unitasking (traditional) 
programs. Multitasking can reduce wall-clock time, computer charge, and response 
time. Multitasking adds a system overhead cost in addition to being in competition 
with other code design objectives such as readability, minimum memory, etc. One 
should not multitask a code without the clear propect of a net gain. 

Strategy: (1) organize the program so that it will be suitable for multitasking; (2) 
employ conventional optimization (such as vectorization) from the bottom up; and 
(3) multitask from the top down. Tasks should contain enough work to overcome 
the overhead of starting them. Multitask at a level (or levels) at which the program 
has natural parallelism. Do not try to match the number of tasks to the number of 
processors-match the number of tasks to the problem. In a mutiuser environment, 
it is not worthwhile to try to maintain a constant number of tasks. 

Task synchronization and data sharing should be planned carefully to obtain a 
correct, efficient code. It is safest to use an existing, tested synchronization templete 
(event and/or lock structure). Use STRONG SYNCHRONIZATION-an over- 
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designed synchronization scheme with more than the minimum number of events 
and/or locks. This will help prevent tasks from getting out of step. Strong syn- 
chronization is designed to increase the probability that an incorrect program will 
go to an error condition or deadlock. 

SAVEd and COMMON variables and some dummy arguments are visible to, 
and can be modified by, different tasks. Use documentation and programming con- 
ventions (e.g., naming conventions) to make such shared variables apparent. 
Minimize passing arguments into tasks. Access to shared variables must be con- 
trolled with events and/or locks. 
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